Anomalous dispersion in the Belousov–Zhabotinsky reaction: Experiments and modeling

نویسندگان

  • Grigory Bordyugov
  • Nils Fischer
  • Harald Engel
  • Niklas Manz
  • Oliver Steinbock
چکیده

We report results on dispersion relations and instabilities of traveling waves in excitable systems. Experiments employ solutions of the 1,4-cyclohexanedione Belousov–Zhabotinsky reaction confined to thin capillary tubeswhich create a pseudo-one-dimensional system. Theoretical analyses focus on a threevariable reaction–diffusion model that is known to reproduce qualitatively many of the experimentally observed dynamics. Using continuation methods, we show that the transition from normal, monotonic to anomalous, single-overshoot dispersion curves is due to an orbit flip bifurcation of the solitary pulse homoclinics. In the case of ‘‘wave stacking’’, this anomaly induces attractive pulse interaction, slow solitary pulses, and faster wave trains. For ‘‘wave merging’’, wave trains break up in the wake of the slow solitary pulse due to an instability of wave trains at small wavelength. A third case, ‘‘wave tracking’’ is characterized by the non-existence of solitary waves but existence of periodic wave trains. The corresponding dispersion curve is a closed curve covering a finite band of wavelengths. © 2009 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Excitation waves in reaction–diffusion media with non-monotonic dispersion relations

We report results on chemical wave propagation obtained from experiments with a modified Belousov–Zhabotinsky reaction. Under pseudo-onedimensional reaction conditions, excitation pulses either form closely stacked, stable wavepackets or merge with a slow leading pulse in front-to-back collisions. Moreover, wave stacking can involve the cascading formation of metastable clusters. These phenomen...

متن کامل

Dynamics of excitation pulses with attractive interaction: kinematic analysis and chemical wave experiments.

We present a theoretical analysis of stacking and destacking wave trains in excitable reaction-diffusion systems with anomalous velocity-wavelength dependence. For linearized dispersion relations, kinematic analysis yields an analytical function that rigorously describes front trajectories. The corresponding accelerations have exactly one extremum that slowly decays with increasing pulse number...

متن کامل

Nucleation and collapse of scroll rings in excitable media.

We describe a novel nucleation mechanism of scroll rings in three-dimensional reaction-diffusion systems with anomalous dispersion. The vortices form after the collision of two spherical wave fronts from a third, trailing wave that only partially annihilates in the wake of its predecessor. Depending on the relative positions of the three relevant wave sources, one obtains untwisted or twisted s...

متن کامل

Scroll wave filaments terminate in the back of traveling fronts.

Experiments with the 1,4-cyclohexanedione Belousov-Zhabotinsky reaction demonstrate that three-dimensional scroll waves can rotate around filaments that end in the wake of a traveling excitation pulse. The vortex structures nucleate during the collision of three nonrotating excitation pulses. The nucleation process and the wave-termination of filaments are direct consequences of the system's an...

متن کامل

Propagation failure dynamics of wave trains in excitable systems.

We report experimental and numerical results on temporal patterns of propagation failures in reaction-diffusion systems. Experiments employ the 1,4-cyclohexanedione Belousov-Zhabotinsky reaction. The propagation failures occur in the frontier region of the wave train and can profoundly affect its expansion speed. The specific rhythms observed vary from simple periodic to highly complex and poss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010